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Abstract. We consider the multiparameteer deformation of a quantum mechanical phase 
space associated with n bosonic and m fermionic coordinates. This generates ( n + m ) x  
( n  + m - I)/2+ 1 parameter solution of the quantum Yang-Banter equation for 
OSp(Zm/Zn). The multiparameter R-matrices for O ( 2 m )  and Sp(Zn) found recently by 
Schimacher  are obtained as special cases. As an example we consider OSp(Z/Z). 

Quantum group theory, which has found applications in many areas of physics and 
mathematics, is based on a distinguished class of Hopf algebras associated with spectral 
parameter independent limits of R-matrix solutions of quantum Yang-Baxter equations 
(QYBE) for Lie groups and supergroups. In this work we shall deduce a multiparameter 
R-matrix solution for OSp(Zm/Zn), where the total number of deformation parameters, 
( n  + m)(n + m - 1)/2+ 1, agrees with (super-analogue of) the general observation of 
Reshitikhin [ 11 relating to multiparameter quantization of groups. Our solution includes 
as a special case, the multiparameter R-matrix solutions of QYBE for C and D series 
recently given by Schirrmacher [2]. 

Zumino [3] considers one-parameter deformation of the quantum mechanical phase 
space with bosonic or fermionic variables. We shall first show how, by tracing a 
development parallel to Zumino's, we can be led to the same multiparameter R-matrix 
for the C series which Schirrmacher has deduced by explicit integration of the 
underlying Yang-Baxter algebra. 

Following Zumino let us consider an n-dimensional quantum hyperplane defined 
in terms of coordinates z' ( i  = 1,2 , .  . . , n ) .  Its associated quantum mechanical phase 
space is given in terms of variables y o  ((1 = 1,2! . . . ,2n); these secondary variables y" 
y e  derived from the primary variables z': y '  = p ; ,  y"" = 2' ( i  = 1,2, .  . . , n). Here 
i = n + 1 - i and pi denotes a momentum variable which is canonically conjugate to z'. 
It is clear that the phase space coordinate y'' is canonically conjugate to y', where 
i'+ i = 2n+ 1. The momenta p .  are, up to multiplicative factors, nothing but derivatives 
of the quantum hyperplane d i  = J/Jz'. Table 1 gives all the rules [4] for a consistent 
multiparameter deformation of the classical algebra of coordinates and derivatives. 
With the help of this multiparameter differential calculus of Schirrmacher (Wess and 
Zumino [5] had considered, as an example of their general considerations, one 
particular family of one-parameter q-deformation which was obtained by equating all 
the deformation parameters), one can easily derive all the commutation relations 
between the phase space variables y". We may distinguish the two cases: 

(i)  y" andybareapairofnon-conjugatevariables,bydefinitiona+b#2n+1.Then 

Y a y b  =fobybyo (1) 
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Table 1. Multiparameter commutation relations defining covariant differential calculus on 
the quantum hyperplane. The lack of commutativity of plane coordinates I' is parametrized 
in terms of n ( n - 1 ) / 2  (possibly complex) deformation parameters denoted qrJ, and I 

denotes the Lie algebra deformation parameler. T h e  coordinate indices i and j may be 
chosen arbitrarily such that i < j .  The summation convention is understood. By definition 
e: = O  if kr i and 1 otherwise. 

with the restriction that a < b. The coeEcients f . b  satisfy 

r2 r2 f -f, --=- 

f b . = S = b + ( r 2 / f = b ) 6 b . + f ~ 0 a b  

ab - o b ' -  
fob' fo'b' 

Clearly, only n(n - 1)/2 fs comprise independent deformation parameters. One finds 
for instance that 

f o b  = r2/ q a b  

then (summation over b is understood) 

1 s a < b s n. 
(ii) yQ and y b  are a pair of conjugate variables, by definition a'= b. Let 1 s a  s n, 

(3) 
Besides the homogeneous quadratic terms we also have the inhomogeneous constant 
terms c. = ihr2-" in (3). An important property of this algebra is that (summation over 
a through 1 to 2n is understood) 

z a' 0 -  6-6 b b' e r y y - c , + y a y a ' - ( r Z - 1 ) r  y y 6 b .  

e,+r'yy"'y' = - r R - Z ( c I + c z / r + .  . . + cn/r"-')  = -ih[n]. 

& = n + l - a  &'=-& E. C 1 e..:= -1. 

(4) 
Here [ n ] = ( r " - r - " ) / ( r - r - ' ) ,  and by definition 

Equation (4) is the symplectic constraint on the associative Hopf algebra generated 
by yn. 

If we ignore the O ( h )  constant terms, the aforementioned quadratic algebra is 
succinctly given using the R-matrix, i.e. y O y = r - ' P R y O y .  In a matrix form the 
quadratic algebra is explicitly given by 

( 5 )  
1 

yby' =; RabcdyCyd 

where Rnbcd is precisely the (2n) 'x  (2n)' R-matrix of Schimacher: 

(6) 
r Robcd =- Sa,Sbd + ( r -  r-')[SUdSb,Oab + S"l'Sd.O",duJ 

fob  

with 
6-6 dob = e,.ebr . 
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We have given multiparameter extension of the consideration analogous to 
Zumino's. It is not hard to generalize these phase space considerations to superspace. 
We shall do this by taking into consideration graduation of the underlying vector 
space. As an obvious generalization of the zi coordinate space consider an ( n  + m ) -  
dimensional quantum vector superspace defined in terms of supernumerary variables 
z1 (I = 1 , 2 , .  . . , n+ m ) .  The Grassmann degree r ( Z )  of bosonic coordinates 
zl, 8,. . . , Z" is zero; and that of fennionic coordinates z"*', znC2 ,..., IS one. 
This implies in turn that squares of fermionic coordinates must vanish. The correspond- 
ing quantum mechanical phase space with n bosonic and m fermionic degrees of 
freedom may be defined in terms of the following 2 n + 2 m  variables xA: 

Z n + m  . 

xm = hr-("-L' J n + m + i - e  1 S a S m  

The derivatives are multiplied by suitable powers of r in order to ensure reality of 
xl, xz, . . . , x " + ~ .  Given the relation of xs to zs, the appropriate generalization of the 
foregoing considerations can be worked out with the help of all the rules [6] collected 
in table 2. 

Table 2. Generalization of the rules given in table 1 to superspace. The Grassmann degrees 
of m ( n )  indices are l(0). The supernumerary indices are denoted by capital letters 
I ,  I,.  . . ,etc. such that I <1. The sign(l.3) stands for(-l)""'""'andsign(l, I )  for(-I)"'". 

For the (anti-)commutation relations involving non-conjugate supercoordinates x A  
and x", it can be checked that 

x"x"=sign(A, B)fABxBxA (8) 
if A is less than or equal to B. Here the signature is * l  depending on whether r ( A ) r ( B )  
is zero or 1 .  The coefficients f A B  which depend on ( n  + m ) ( n  + m - 1 ) / 2 +  1 deformation 
parameters are required to satisfy 

f B A  = (r2)"'A'6AB + @BAr2/fAB + f B A @ A B  

fa"= fA,",=-=- YZ Y2 
fA'B fAB' 

rz 
fob =- 1 S a  < b< n + m. 

% b 



924 P Parashar and S K Soni 

On the other hand, for a pair of conjugate supercoordinates x A  and X A  the 
(anti-)commutation relations can be written in the following manner (summation over 
the repeated index c is implied and 1 5  A 5 n + m):  

( - 1 ) " A )  
XA'X A = EA + XAXA'+ (1 - r-2)XA'XA@AA' 

f A A  

+(  1 - r - 2 ) ( - i ) " ( A ) i ( ~ ( A A ) - n ( C ) ) ~ A  
CO*CXCXC' (10) 

A-8 where dAB = EAeBr . 
The 'hatted' supernumerary indices are given by S = -a', together with 

1 -  A A 
1 , 2  ,..., h , m + l , . . . ,  m + n = n - ( m - l ) , n - ( m - a )  ,..., n,n ,..., 1. 

In addition 

E' = E 2 = .  . . = E ,  = -E,+l =. . . = -E,+" = E,+,+, =. . . = E2n+2m = 1 

The inhomogeneous terms EA are given by 

E, = fi, E2 = fir, .  . . , & = fir"-' 

L + 2 = E , + l / r ,  . . . , E m + m = L + n - , / r .  
These O( 6 )  constant terms lead to the following orthosymplectic constraint (summation 
over A from 1 through 2 n + 2 m  is understood) 
i = ( ~ ) E A r A X ~ ' X ~  

- - ir"-("-l) +i rn- [m-2)-  c2+. . .+ir"& 
r n - l  - - r"&,+, - cmt2+. . .- r - l t m + n  

= i f ir"[m] - i f i [n ] { r -"  + ( r -  r - ' ) [ m ] } .  (11) 

Equation (11) is evidently a generalization of (4). The special cases m = O  and n = O  
of this orthosymplectic constraint correspond respectively to symplectic and orthogonal 
constraints for the central length element. The case m = n is also interesting because 
then the above constraint vanishes identically. 

On ignoring the O( h )  constant terms, the quadratic algebra XOX is expressible 
explicitly in terms of the R-matrix for OSp(Zm/Zn). We have 

(12) 
1 
r 

xBxA =- RABCDxCxD 

with 

R A E C D  = 
sign( A, B )  

r8 AC s + ( r - r-' ) sAD 6 Bc 0"' 
fAB 

(13) + ( r - r - l ) i w ( A ) - - ( C )  sign(A, ' A)dACOACSABSCD. 

where 
A-Li dAB = EAEBr 

and E S  and hatted numbers are defined as above. Equation (13) is the R-matrix which 
is a multiparameter solution of the quantum Yang-Baxter equation for OSp(Zm/Zn). 
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Let us give the simplest non-trivial example of the general considerations given 
above. 

OSp(2/2). In this case there are two independent parameters. The complete set of 
commutation relations among the phase space variables are (here pq = r2):  

x'x==p*2x'  x'x3 = qx3x' 

2 x 4  = px4x2 x3x4= q x Y  

(x!)2=(x4)2=0 (14) 
X4Xl = h - x1x4 

~ ~ x ~ = i h + r - ~ x ~ x ~ - i ( r ~ - l ) r  x x . -2 1 4 

The orthosymplectic constraint reads as 
irxl'xl - &dXZ+ r-1x3'x3+ir-1X4X4=~, 

We would like to conclude by making the following pertinent remarks: 
(1) Equation (9) has not been asserted by us in this work; it follows as a consequence 

of the definitions of the supercoordinates x A  and the algebra given in table 2. The lirst 
line of (9) need not cause any confusion due to fA5 occurring on both sides because 
this is merely an alternate way of expressing f A A  and f5A ( B > A )  in terms of our 
independent parameters r' and f A 5 .  Explicitly f A A  = (?)"'A' and f 5 A  = r2/fAs.  

(2) To further clarify the meaning of hatted supernumerary indices it may be added 
that in the two special cases of m = 0 and n = 0, respectively, our expressions reduce to: 

. . A  

1,2 )...) n * = n , n - l ,  ...) 1 
- 1  

I , & .  . . , k=  - ( m - l ) ,  - ( m - 2 ) ,  .. . , O .  

(3) In this work where we are interested in deformation of phase space, we have 
assumed that each of the 2n+2m variables defining the super phase space is real. This 
implies that all the deformation parameters are pure phases. However there exists 
another reality structure. The calculus given in table 1 (2) is automorphic under 

- - - 
Z' =a,  ai = zi ( ~ ' = a , , & = z ' )  

provided 191 = r and r is real. If we impose this automorphism, we will be led to the 
oscillator algebra given by h s z  and Woronowicz. 
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